Package: adestr 1.0.0

adestr: Estimation in Optimal Adaptive Two-Stage Designs

Methods to evaluate the performance characteristics of various point and interval estimators for optimal adaptive two-stage designs as described in Meis et al. (2024) <doi:10.1002/sim.10020>. Specifically, this package is written to work with trial designs created by the 'adoptr' package (Kunzmann et al. (2021) <doi:10.18637/jss.v098.i09>; Pilz et al. (2021) <doi:10.1002/sim.8953>)). Apart from the a priori evaluation of performance characteristics, this package also allows for the evaluation of the implemented estimators on real datasets, and it implements methods to calculate p-values.

Authors:Jan Meis [aut, cre], Martin Maechler [cph]

adestr_1.0.0.tar.gz
adestr_1.0.0.zip(r-4.5)adestr_1.0.0.zip(r-4.4)adestr_1.0.0.zip(r-4.3)
adestr_1.0.0.tgz(r-4.4-x86_64)adestr_1.0.0.tgz(r-4.4-arm64)adestr_1.0.0.tgz(r-4.3-x86_64)adestr_1.0.0.tgz(r-4.3-arm64)
adestr_1.0.0.tar.gz(r-4.5-noble)adestr_1.0.0.tar.gz(r-4.4-noble)
adestr_1.0.0.tgz(r-4.4-emscripten)adestr_1.0.0.tgz(r-4.3-emscripten)
adestr.pdf |adestr.html
adestr/json (API)
NEWS

# Install 'adestr' in R:
install.packages('adestr', repos = c('https://jan-imbi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jan-imbi/adestr/issues

On CRAN:

adaptiveadoptrconfidencedesignsestimationintervalsoptimalparameterpointtwo-stage

4.08 score 12 scripts 252 downloads 55 exports 82 dependencies

Last updated 4 months agofrom:0df8d7d16b. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 09 2024
R-4.5-win-x86_64OKNov 09 2024
R-4.5-linux-x86_64OKNov 09 2024
R-4.4-win-x86_64OKNov 09 2024
R-4.4-mac-x86_64OKNov 09 2024
R-4.4-mac-aarch64OKNov 09 2024
R-4.3-win-x86_64OKNov 09 2024
R-4.3-mac-x86_64OKNov 09 2024
R-4.3-mac-aarch64OKNov 09 2024

Exports:AdaptivelyWeightedSampleMeananalyzeBiasBiasReducedCentralityCoverageevaluate_estimatorevaluate_scenarios_parallelExpectationFirstStageSampleMeanget_example_designget_example_statisticsget_stagewise_estimatorsIntervalEstimatorLikelihoodRatioOrderingCILikelihoodRatioOrderingPValueLinearShiftRepeatedPValueMedianUnbiasedLikelihoodRatioOrderingMedianUnbiasedMLEOrderingMedianUnbiasedNeymanPearsonOrderingMedianUnbiasedScoreTestOrderingMedianUnbiasedStagewiseCombinationFunctionOrderingMidpointLikelihoodRatioOrderingCIMidpointMLEOrderingCIMidpointNeymanPearsonOrderingCIMidpointScoreTestOrderingCIMidpointStagewiseCombinationFunctionOrderingCIMinimizePeakVarianceMLEOrderingCIMLEOrderingPValueMSENaiveCINaivePValueNeymanPearsonOrderingCINeymanPearsonOrderingPValueNormalPriorOverestimationProbabilityplotplot_pPointEstimatorPseudoRaoBlackwellPValueRaoBlackwellRepeatedCISampleMeanScoreTestOrderingCIScoreTestOrderingPValueSoftCoverageStagewiseCombinationFunctionOrderingCIStagewiseCombinationFunctionOrderingPValueTestAgreementUniformPriorVarianceWeightedSampleMeanWidth

Dependencies:abindadoptrbackportsbootbroomcarcarDataclicodetoolscolorspacecorrplotcowplotcpp11cubatureDerivdigestdoBydplyrfansifarverforcatsFormulafuturefuture.applygenericsggplot2ggpubrggrepelggsciggsignifglobalsgluegridExtragtableisobandlabelinglatex2explatticelifecyclelistenvlme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivparallellypbkrtestpillarpkgconfigpolynomprogressrpurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackrlangrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr

Introduction to adestr

Rendered fromIntroduction.Rmdusingknitr::rmarkdownon Nov 09 2024.

Last update: 2024-07-11
Started: 2023-04-06

Readme and manuals

Help Manual

Help pageTopics
adestradestr-package adestr
Analyze a datasetanalyze analyze,data.frame-method
Combine EstimatoreScoreResult objects into a listc,EstimatorScoreResult-method
Combine EstimatoreScoreResult objects into a listc,EstimatorScoreResultList-method
Calculate the second-stage critical value for a design with cached spline parametersc2_extrapol
Performance scores for point and interval estimatorsBias Centrality Coverage EstimatorScore EstimatorScore-class Expectation MSE OverestimationProbability SoftCoverage TestAgreement Variance Width
Evaluate performance characteristics of an estimatorevaluate_estimator
Evaluate performance characteristics of an estimatorevaluate_estimator,Bias,PointEstimator-method evaluate_estimator,Centrality,PointEstimator-method evaluate_estimator,Coverage,IntervalEstimator-method evaluate_estimator,Expectation,PointEstimator-method evaluate_estimator,IntervalEstimatorScore,PointEstimator-method evaluate_estimator,list,Estimator-method evaluate_estimator,MSE,PointEstimator-method evaluate_estimator,OverestimationProbability,PointEstimator-method evaluate_estimator,PointEstimatorScore,IntervalEstimator-method evaluate_estimator,SoftCoverage,IntervalEstimator-method evaluate_estimator,TestAgreement,IntervalEstimator-method evaluate_estimator,TestAgreement,PValue-method evaluate_estimator,Variance,PointEstimator-method evaluate_estimator,Width,IntervalEstimator-method evaluate_estimator-methods
Evaluate different scenarios in parallelevaluate_scenarios_parallel
Generate an exemplary adaptive designget_example_design
Generate a list of estimators and p-values to use in examplesget_example_statistics
Conditional representations of an estimator or p-valueget_stagewise_estimators get_stagewise_estimators,AdaptivelyWeightedSampleMean,Normal-method get_stagewise_estimators,BiasReduced,Normal-method get_stagewise_estimators,IntervalEstimator,DataDistribution-method get_stagewise_estimators,IntervalEstimator,Student-method get_stagewise_estimators,LikelihoodRatioOrderingCI,Normal-method get_stagewise_estimators,LikelihoodRatioOrderingPValue,Normal-method get_stagewise_estimators,LinearShiftRepeatedPValue,Normal-method get_stagewise_estimators,MedianUnbiasedLikelihoodRatioOrdering,Normal-method get_stagewise_estimators,MedianUnbiasedMLEOrdering,Normal-method get_stagewise_estimators,MedianUnbiasedNeymanPearsonOrdering,Normal-method get_stagewise_estimators,MedianUnbiasedScoreTestOrdering,Normal-method get_stagewise_estimators,MedianUnbiasedStagewiseCombinationFunctionOrdering,Normal-method get_stagewise_estimators,MidpointLikelihoodRatioOrderingCI,Normal-method get_stagewise_estimators,MidpointMLEOrderingCI,Normal-method get_stagewise_estimators,MidpointNeymanPearsonOrderingCI,Normal-method get_stagewise_estimators,MidpointScoreTestOrderingCI,Normal-method get_stagewise_estimators,MidpointStagewiseCombinationFunctionOrderingCI,Normal-method get_stagewise_estimators,MinimizePeakVariance,Normal-method get_stagewise_estimators,MLEOrderingCI,Normal-method get_stagewise_estimators,MLEOrderingPValue,Normal-method get_stagewise_estimators,NaiveCI,Normal-method get_stagewise_estimators,NaivePValue,Normal-method get_stagewise_estimators,NeymanPearsonOrderingCI,Normal-method get_stagewise_estimators,NeymanPearsonOrderingPValue,Normal-method get_stagewise_estimators,PointEstimator,DataDistribution-method get_stagewise_estimators,PointEstimator,Student-method get_stagewise_estimators,PseudoRaoBlackwell,Normal-method get_stagewise_estimators,PValue,DataDistribution-method get_stagewise_estimators,PValue,Student-method get_stagewise_estimators,RaoBlackwell,Normal-method get_stagewise_estimators,RepeatedCI,Normal-method get_stagewise_estimators,ScoreTestOrderingCI,Normal-method get_stagewise_estimators,ScoreTestOrderingPValue,Normal-method get_stagewise_estimators,StagewiseCombinationFunctionOrderingCI,Normal-method get_stagewise_estimators,StagewiseCombinationFunctionOrderingPValue,Normal-method get_stagewise_estimators,VirtualIntervalEstimator,ANY-method get_stagewise_estimators,VirtualIntervalEstimator,Student-method get_stagewise_estimators,VirtualPointEstimator,ANY-method get_stagewise_estimators,VirtualPointEstimator,Student-method get_stagewise_estimators,VirtualPValue,ANY-method get_stagewise_estimators,VirtualPValue,Student-method
Generate the list of estimators and p-values that were used in the paperget_statistics_from_paper
Interval estimatorsConfidenceInterval ConfidenceInterval-class IntervalEstimator IntervalEstimator-class LikelihoodRatioOrderingCI MLEOrderingCI NaiveCI NeymanPearsonOrderingCI RepeatedCI ScoreTestOrderingCI StagewiseCombinationFunctionOrderingCI
Calculate the second-stage sample size for a design with cached spline parametersn2_extrapol
Normal prior distribution for the parameter muNormalPrior
Plot p-values and implied rejection boundariesplot_p
Plot performance scores for point and interval estimatorsplot,EstimatorScoreResult-method
Plot performance scores for point and interval estimatorsplot,EstimatorScoreResultList-method
Plot performance scores for point and interval estimatorsplot,list-method
Point estimatorsAdaptivelyWeightedSampleMean BiasReduced FirstStageSampleMean MedianUnbiasedLikelihoodRatioOrdering MedianUnbiasedMLEOrdering MedianUnbiasedNeymanPearsonOrdering MedianUnbiasedScoreTestOrdering MedianUnbiasedStagewiseCombinationFunctionOrdering MidpointLikelihoodRatioOrderingCI MidpointMLEOrderingCI MidpointNeymanPearsonOrderingCI MidpointScoreTestOrderingCI MidpointStagewiseCombinationFunctionOrderingCI MinimizePeakVariance PointEstimator PointEstimator-class PseudoRaoBlackwell RaoBlackwell SampleMean WeightedSampleMean
P-valuesLikelihoodRatioOrderingPValue LinearShiftRepeatedPValue MLEOrderingPValue NaivePValue NeymanPearsonOrderingPValue PValue PValue-class ScoreTestOrderingPValue StagewiseCombinationFunctionOrderingPValue
Statistics and Estimators of the adestr packageEstimator Statistic Statistic-class Statistics
TwoStageDesignWithCache constructor functionTwoStageDesignWithCache
Uniform prior distribution for the parameter muUniformPrior